

1

2

Abstract

his eBook helps mobile developers cut right to the code

and get code done quickly by providing an overview of

key services in the cloud, what services to use based on your

needs, step by step guidance, sample code, sample

applications, and a free account to get started.

Developers get out of bed wanting to write code.

Unfortunately, many non-coding tasks need to be wrangled

before coding can begin. We don’t mean coffee; we mean

things like waiting for servers to be purchased, installing

your database engine, configuring your firewall ports, local

data caching options, figuring out your deployment

toolchain, creating a reasonable authentication approach,

getting your shared libraries in order, and getting the

testing frameworks lined up. Those are just the things in the

way, not the things that aren’t in the way but can’t be

forgotten, such as backups, scale planning, and logging.

These tasks cost you precious time that could be better

spent coding, brainstorming, standing around the

whiteboard, playing foosball, etc. Once you jump through

the necessary non-coding hoops and finally get to coding,

the question quickly becomes, “How do you get code done

faster?”

Taking advantage of the right services running in the cloud

helps developers cut right to the code by eliminating a

number of non-coding tasks. Examples include

environment management, spinning up a SQL Database in

Azure to skip version problems, automating backups,

enabling advanced “encryption at rest” features, using

repeatable scripting of environments to make sure services

are enabled, adopting the CI toolset of Azure Mobile

Services to publish straight from VSTS (oh, hello again,

three otherwise lost weeks), and provisioning Azure AD for

authentication and authorization.

Then there’s “getting code done fast.” As one developer put

it, there are two types of code:

1. The fun stuff: Code that makes your app unique and

valuable, and helps drive the business.

2. The not fun stuff: Glue code which is less game-

changing but makes stuff work. An example would

be building framework code to compensate for how

different browsers or devices work.

Powerful finished services in the cloud can help mobile

developers get from 0-60 in their app building process.

How about a fully-built mobile backend that integrates with

iOS, Android, and Windows? Services that enable push

notifications, analytics, and caching. All of it can be

accessed with a few lines of code.

The time is now. We invite you to cut right to the code.

T

3

PUBLISHED BY

Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2016 by Microsoft Corporation

All rights reserved.

This document is provided “as-is.” Information and views expressed in

this document, including URL and other Internet Web site references,

may change without notice. You bear the risk of using it.

Some examples are for illustration only and are fictitious. No real

association is intended or inferred.

This document does not provide you with any legal rights to any

intellectual property in any Microsoft product. You may copy and use this

document for your internal, reference purposes.

4

Table of Contents

Abstract ... 2

Table of Contents .. 4

Overview ... 5

Introduction .. 5

Why Use App Service for your Mobile Apps 6

Getting Started with Microsoft Azure 6

Common Mobile App Scenarios ... 7

When to Use It ... 7

Identity Management .. 9

Push Notifications .. 11

Offline Data Sync .. 12

Scaling your Mobile App’s Backend 14

Caching for Performance ... 15

Develop, Distribute, and Beta-test your Mobile Apps 16

API Management .. 17

Conclusion ... 19

Recommended Next Steps ... 19

file:///F:/db-ST8V/Dropbox/Azure/eBooksProject/Azure%20Mobile%20Apps%20eBook%20Formatted.docx%23_Toc455673180
file:///F:/db-ST8V/Dropbox/Azure/eBooksProject/Azure%20Mobile%20Apps%20eBook%20Formatted.docx%23_Toc455673182
file:///F:/db-ST8V/Dropbox/Azure/eBooksProject/Azure%20Mobile%20Apps%20eBook%20Formatted.docx%23_Toc455673186
file:///F:/db-ST8V/Dropbox/Azure/eBooksProject/Azure%20Mobile%20Apps%20eBook%20Formatted.docx%23_Toc455673195

5

Overview

Introduction

With over sixty services, Microsoft Azure provides a modern

platform for any app, written in any language. The lifeblood

of the private and public cloud is applications that expose

rich, interactive sites and services to everyone on the planet,

accessible via a mobile device. Azure App Service helps you

build modern mobile apps that scale. It is a cloud platform

to build powerful web and mobile apps, for any platform

and any device that connects to data anywhere in the cloud

or on-premises. Built for developers, App Service is a fully-

managed platform with powerful capabilities that make it

easy to stage and then deploy to production with support

for automatic updating. You can code in your language of

choice, use your favorite development tools, and then easily

scale up and out to meet the demands of your business and

customers.

Azure App Service provides an abundance of services and

features in four categories:

 Mobile Apps

 Web Apps

 API Apps

 Logic Apps

This guide will cover how you can build a great mobile

experience by leveraging the Mobile Apps in Azure App

Service. Other guides will cover other parts of Azure App

Service.

Pro Tip

One thing to watch for in this guide is the Additional

resources section. Each one will provide additional links

to more detailed documentation about the subject

you’ve just read about. In addition, many will have a

link to the hands-on labs, sample code, and more.

These labs contain tons of sample code, step-by-step

walkthroughs, and ARM templates to help you explore

and get to know Azure App Service and mobile apps.

Microsoft Azure App Service is a platform-as-a-service

(PaaS) offering. You use it to create web and mobile apps

for any platform or device. You can use it to integrate your

apps with SaaS solutions, connect with on-premises

applications, and automate your business processes. Azure

runs your apps on fully-managed virtual machines (VMs),

with your choice of shared VM resources or dedicated VMs.

App Service combines the web and mobile capabilities that

were previously delivered separately as Azure Websites and

Azure Mobile Services. In addition, there are new

capabilities for automating business processes and hosting

cloud APIs. As a single integrated service, App Service lets

you compose various components into a single solution.

http://rgroup.us/
https://azure.microsoft.com/en-us/services/app-service/

Overview

6

Why Use App Service for your

Mobile Apps

Azure App Service provides a number of great benefits to

you and your application. When looking at App Service over

other options, a key foundational tenet is that App Service

manages the underlying infrastructure. As a developer,

you’re not responsible for patching and maintenance. This

is a major non-coding task that is eliminated. Speaking of

code, App Service provides choice with first class support

for ASP.NET, Node.js, Java, PHP, and Python.

App Service was built with DevOps in mind. You can set up

continuous integration and deployment with Visual Studio

Team Services, GitHub, or BitBucket. You can shepherd

updates through test and staging environments as well as

perform A/B testing. Because App Service has a rich API

surface, you can manage your apps using Azure PowerShell

or the cross-platform command line interface (CLI) tooling.

Once you’ve got your mobile app backend running in

Azure, you’re supported by the global scale and reach of

twenty-four world-wide regions so you can host your app

where you need it most. Additionally, you’ll have the peace

of mind that comes with App Service’s high availability SLA.

With all of these benefits, you’ll want to get started quickly.

In the rest of this guide, you’ll see how to use dedicated

tools in Visual Studio to streamline the work of creating,

deploying, and debugging your web app.

Getting Started with Microsoft

Azure

In order to build and deploy your web app to Microsoft

Azure, you need a subscription. You can get a free Azure

account or it’s possible you already have access and might

not even realize it. You could have access via:

 Your organization’s subscription

 Your own subscription provided via your MSDN

Subscription

 Your own subscription provided via Visual Studio

Dev Essentials

Regardless of how you have access, you’ll need enough

permissions to create and manage new objects in the

subscription.

https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/
https://www.visualstudio.com/en-us/products/visual-studio-dev-essentials-vs.aspx
https://www.visualstudio.com/en-us/products/visual-studio-dev-essentials-vs.aspx

Overview

7

Common Mobile App Scenarios

Mobile apps without backend services are typically very

limited. The promise of mobile apps is having access to

information and being able to act on it from wherever you

are. Azure App Service helps you by providing rich backend

services so you can focus on the mobile user experience

and application-specific logic. In addition, you often have

parts of your application that can be accessed using both

web and mobile interfaces.

When to Use It

Mobile Apps in Azure App Service offer a highly scalable,

globally available mobile application development platform

that brings a rich set of capabilities to mobile developers.

The modular architecture of Mobile Apps in Azure App

Service allows you to choose the features you want to use

in your mobile apps whether they are native, cross-platform

Xamarin, or Cordova (Adobe PhoneGap). Also, because

Azure provides the core set services as an app type under

the general App Service umbrella, your mobile solution has

access to all of the other Azure services like Azure AD, Redis

Cache, and Azure CDN, to quickly build and deploy

powerful apps.

As with most technologies, Azure continues to grow and

evolve at a rapid pace. Steps to complete certain tasks get

optimized out, tools get updated, and generally things just

get better. This document reflects the state of the art as of

June 2016, using versions with the latest updates and

patches. Additionally, as with many things, there is more

than one way to create something.

The tools that enable you to get the most done in as few

steps as possible include:

 Visual Studio 2015 with Xamarin

 Azure SDK and Tools for Visual Studio 2015

Azure App Service and the Mobile Apps component allow

you to get started from nothing or to integrate mobile

clients with existing services you may have already built for

your application. When starting from “File | New”, you can

start from the Azure portal or you can start from Visual

Studio. It’s up to you. Starting from the Azure portal gives

you additional flexibility if you want to have a non-.NET

backend like Node.js and/or want to start with native

templates for iOS or Android that aren’t built into Visual

Studio. When you start from the Azure Portal, it will give

you a sample app server backend—Node.js or .NET—with

a SQL Database and a matching client. Azure preconfigures

the sample with a “to do” style application. This can be a

great starting point if you’re new to Azure or mobile client

development. You can evolve the samples as you see fit. If

you choose a .NET backend, you will be able to download a

Visual Studio solution. Regardless of what client type you

pick, you’ll get a set of files you can use in the appropriate

client tooling environment. This type of starting point is

great when your focus is on the mobile clients and backend

services specifically for the mobile clients. You get to “cut

to the code” and not focus on setup and configuration

hassles.

Common Mobile App Scenarios

8

Azure provides client SDKs to make it easier to build your

mobile clients and work with the various services exposed

via an Azure Mobile App. You’ll find support for working

with data, authentication, push notifications, and more. The

set of Client SDKs covers native development (iOS, Android,

and Windows), cross-platform development (Xamarin for

iOS and Android, as well as Xamarin Forms), and hybrid

application development (Apache Cordova). Each client

SDK is available with an MIT license and is open source.

You’re not limited, however, to building your mobile app

solution one way. You can also use Azure App Service to

expose APIs and features in a large-scale application that

includes not only mobile clients, but desktop, web

browsers, and other services. Visual Studio with the Azure

SDK and Tools allows you to add REST API Client support

to existing applications via a context menu. You can point

Visual Studio at your Mobile App or other Azure App

Service endpoints and have it help create types that match

your server-side API. This allows you to have a cohesive set

of backend services for both mobile and other “clients”.

Additional steps

After you’ve got your mobile app service loaded in Azure,

there are additional steps you might want to perform.

Custom Domain

By default when you publish your web site to Azure, you’ll

be able to access it via myapp.azurewebsites.net, where

“myapp” is the name of your deployed service. In particular,

this is the only option when using a free App Service Plan—

the settings in Azure that control scale and implicitly

pricing. If you upgrade to at least the Basic plan, you can

configure your web app with a custom domain name. If you

don’t have a custom domain already, you can buy and

register one from the Azure portal.

SSL Certificate

One great thing about the free Azure App Service plan is

that you get SSL included. However, once you add a custom

domain, you’ll need to provide your own SSL certificate. To

do this, you’ll need to acquire an SSL certificate from a

recognized certificate authority. You’ll then need to ensure

you’re using the correct pricing tier. You then configure

your web app to use the cert. Finally, you might need to

force your app to support SSL only.

Continuous Delivery

While using the Visual Studio tools for initial deployment is

great, long term use, especially when working on a team, is

not ideal. You’ll really want to consider using one of the

great tools out there such as Visual Studio Team Services

(VSTS) or GitHub. Both services provide mechanisms to

update your web app after changes are pushed to a

centralized source repository. VSTS in particular supports a

full Release Management tool that supports release

pipelines with deployment to staging slots and automated

regression testing before going live. The Team Services

docs provide additional details, pointers, and walkthroughs.

Additional resources

Configure a custom domain name in App Service

Enable HTTPS for an app in Azure App Service

Visual Studio Team Services

Hands-on labs, sample code, and more

https://www.visualstudio.com/docs/overview
https://www.visualstudio.com/docs/overview
https://azure.microsoft.com/en-us/documentation/articles/web-sites-custom-domain-name/
https://azure.microsoft.com/en-us/documentation/articles/web-sites-configure-ssl-certificate/
https://www.visualstudio.com/products/visual-studio-team-services-vs
http://rgroup.us/

Common Mobile App Scenarios

9

Identity Management

Overview

Modern mobile apps often need to restrict what data and

features are made available to individuals and/or groups of

users. Azure App Service supports single sign-on (SSO) for

your apps regardless of where users are logging in from,

whether it be the public internet or your own internal

network. In addition, you can integrate social logins—

Facebook, Twitter, etc.—for customers and non-corporate

members through integration with OAuth 2.0, OpenID

Connect, and SAML 2.0.

The problem

How do you get an app that’s run on-premises to be cloud

aware and support logins outside of your corporate

network? What about customers and business partners who

need access to your app but aren’t employees?

The solution

Azure Active Directory (AD) provides organizations with

enterprise-grade identity management for cloud

applications. Azure AD integration gives your users a

streamlined sign-in experience and helps your application

conform to IT policy. By enabling Azure AD support in your

application, your users won’t need to remember an

additional set of credentials. Instead, they’ll use the same

information already in use to access your organization’s

resources. In addition, using Azure AD, you gain access to a

very large social network in that you can allow users with

Microsoft accounts. Finally, Azure App Service enables

integration with popular social media providers.

Services used

 Azure Active Directory

 Azure App Service

Azure Active Directory

Adding Azure AD support to your application means that

management is done with familiar concepts for managing

user provisioning and access control. If you have an on-

premises directory, you can sync with Azure AD. You can re-

use existing Azure AD groups and distribution lists, and

more. Administrators can assign access to apps, whether it

be for specific users or entire groups.

In addition, your application has access to this information

using the Azure AD Graph API. This API allows your app a

number of identity and access control operations including:

 Create a new user in a directory

 Get a user’s detailed properties, such as their

groups

 Update a user’s properties, such as their location

and phone number, or change their password

 Check a user’s group membership for role-based

access

 Disable a user’s account or delete it entirely

To get started, access the classic Azure portal at

https://manage.windowsazure.com/ and log in (Microsoft’s

migration from the classic portal to the new portal is near

complete so only use the classic portal when necessary).

The portal contains a section labelled Active Directory that

provides the controls to define users, groups, and

applications. To be able to control who can use your

application, you can create your own Azure AD directory or

use an existing one—it depends upon how you want to

segment access to your application. Within your AD you will

need to create an application, which is a set of configuration

settings that tell AAD about your mobile app.

https://azure.microsoft.com/en-us/documentation/articles/active-directory-graph-api/
https://manage.windowsazure.com/

Common Mobile App Scenarios

10

If you’ve created a new directory, you will need to add users.

One of the great things about Azure AD is that it provides

support for adding new and existing users from other

sources. Using the Azure Management port, you can add:

 A new “native” user to the directory

 An existing user in another Azure AD directory

 An existing user with a Microsoft account

 Users in partner companies

Assuming you have users in place, you need to define an

application object in the directory that you’ll map to your

web app. When you add your application, you provide a

name and specify the type of application. Currently you

have two choices:

 Web Application and/or Web API

 Native Client Application

The choice in this case may not be obvious if you’re focused

on a mobile app, but, since you’re building a service, you’d

want the first option. Once you pick the web app related

option (which covers mobile app services as well), you need

to provide two items. The first is the Sign-on URL which is

the URL a user will use to log in to your app. The second

item is the App ID URI. This just needs to be a unique URI

(often provided in the form of a URL) the Azure AD can use

to identify your app. Once you’ve entered these basic items,

you can then use the Configure Azure AD Authentication

wizard in Visual Studio to add SSO support via Azure AD to

your web app.

Social Sign In

When using Azure AD, you gain access to a very large social

network in that you can allow users with Microsoft

accounts—the same ID shared by Xbox and Outlook.com

for example—to use your application. Adding social sign-in

via other providers to your web app requires three steps.

First, you need to gain developer access to your social

networks of choice, register your application, and get items

like access tokens. Second, once you have this information,

you use the Authentication / Authorization blade in the

Azure Portal for your web app. Once you turn this feature

on, you have access to a number of social networks like

Facebook, Google, and Twitter.

Third, you will need to tweak your application so that users

can choose the supported login types that you’ve enabled,

both for successful and failed logins, and redirect the user

to the right place in your web app once it has completed

the authentication and authorization dance.

Additional resources

Azure App Service Security

Azure Active Directory Management Portal

Hands-on labs, sample code, and more

https://azure.microsoft.com/en-us/documentation/articles/app-service-security-readme/
https://manage.windowsazure.com/
http://rgroup.us/

Common Mobile App Scenarios

11

Push Notifications

Overview

Smartphones and tablets have the ability to "notify" users

when an event has occurred. These notifications can take

many forms.

The problem

Your mobile solution runs on multiple mobile platforms like

iOS, Android, and Windows Mobile. You need a single

backend to be able to integrate with your server code, yet

work with all of the vendor’s notification systems.

The solution

Azure Notification Hubs allows you to send cross-platform,

personalized mobile push notifications with a single API

call. You can easily integrate them into your apps.

Notification Hubs eliminate complexity; you do not have to

manage the challenges of push notifications. They use a full

multiplatform, scaled-out push notification infrastructure,

and considerably reduce the push-specific code that runs

in the app backend. In addition, they implement all the

functionality of a push infrastructure. Devices are only

responsible for registering Platform Notification System

(PNS) handles, and the backend is responsible for sending

platform-independent messages to users or interest

groups.

Services used

 Azure Notification Hubs

Getting notifications out to your users and their mobile

devices requires three engineering sections:

 Vendor specific configuration for push

notifications

 Notification Hubs in Azure

 Notification support in your mobile app

Each of the major mobile OS vendors—Apple, Google, and

Microsoft—require that you register your mobile

application with them as well as register for push

notifications. Each vendor documents the specifics at their

developer portals to do this so your app can use each

vendor’s PNS. In addition, the Microsoft Azure

documentation covers specific details. See the additional

resources section for links.

Once you’ve got the required tokens and keys for working

with the vendor PNS, you can define your Notification Hub

in Azure. You do this from the Azure Portal. When you

create your hub, you need to provide with a name, a

globally unique to Azure namespace, and you need to

assign it to an Azure Resource Group. Once you’ve created

your Notification Hub, you’ll need to use the Settings pane

to access the Push Notification Services pane. Here you

provide your vendor specific PNS information to enable the

Notification Hubs infrastructure to talk to each provider.

Each provider is different but the general pattern is you

need to provide one or two app-specific tokens or secrets

given to you by the vendor.

Common Mobile App Scenarios

12

Once you’ve completed these two tasks, you can turn your

attention to your client applications. Regardless of

platform, the same basic concepts apply. Microsoft

provides SDKs for all of the supported client platforms. Your

app will need to link those libraries. Then your application

needs to register at startup with Notification Hubs using the

correct connection string provided in the Azure Portal. Each

mobile app registers with Notification Hubs and possibly

with the vendor PNS. Then you put in the code that

processes the notifications and provides the user

experience within the guidelines of each platform. Last but

not least, your backend needs to send notifications to Azure

which in turn will forward this information to registered

apps on your devices. In order for you to work in parallel as

a team with some folks working on the client and some on

the backend, you can create test messages from the Azure

Portal.

Additional resources

Hands-on labs, sample code, and more

Azure Notification Hubs

Sending push notifications to iOS

Sending push notifications to Android

Sending push notifications to Windows Store Apps

Offline Data Sync

Overview

Offline data sync is a client and server SDK feature of Azure

Mobile Apps that makes it easy for developers to create

apps that are functional without a network connection.

When your app is in offline mode, users can still create and

modify data, which will be saved to a local store. When the

app is back online, it can synchronize local changes with

your Azure Mobile App backend. The feature also includes

support for detecting conflicts when the same record is

changed on both the client and the backend. Conflicts can

then be handled either on the server or the client.

The problem

You have a mobile solution that needs to work

disconnected from networks. In addition, you want to be

able to handle conflicts when multiple users edit the same

data, including when offline.

The solution

Azure Mobile Apps gives both server-side and client-side

support for offline data sync and conflict resolution.

Services used

 Azure Mobile App Service

Not all mobile apps need offline data sync. However, when

they do, it readily becomes apparent that there’s a quite a

bit of work to do. This is a clear example where Azure lets

you cut to the code that’s more domain-focused and less

framework-focused. Offline sync has a number of benefits.

It can help improve overall application responsiveness by

caching server data locally on the device. It lets you create

robust apps that remain active and functional when there

are network issues, or even allow device users to create and

http://rgroup.us/
https://azure.microsoft.com/en-us/documentation/articles/notification-hubs-push-notification-overview/
https://azure.microsoft.com/en-us/documentation/articles/notification-hubs-ios-apple-push-notification-apns-get-started/
https://azure.microsoft.com/en-us/documentation/articles/notification-hubs-android-push-notification-google-gcm-get-started/
https://azure.microsoft.com/en-us/documentation/articles/notification-hubs-windows-store-dotnet-get-started-wns-push-notification/

Common Mobile App Scenarios

13

modify data when there is no network access at all. It helps

you sync data across multiple devices and detect conflicts

when the same record is modified by two devices. You can

choose to use this feature from the start or add it later.

To get started and learn how the server and client

components work together, you would want to at least

create a new Mobile App Service from the beginning with a

client from the Azure portal, even if it’s just for learning.

Once you’ve created a Mobile App this way, you can

examine the code. Assuming you created one with a

Xamarin Android client, you could download and open the

solution in Visual Studio.

Once there, you’ll see the sample already contains code to

support offline synchronization using a local SQLite

database. There are a number of help functions that help

you initialize the local data store, define tables representing

application types, and activity classes to support CRUD

operations (Create, Read, Update, and Delete). In addition,

there are methods like PushAsync and SyncAsync that let

you send your changes to your data backend in Azure and

pull new data down to the client.

While the sample app is focused on a To Do List, you can

take the sample framework code, reference the Azure SDK,

and, with the appropriate sever-side updates, use the same

type of code in your existing mobile clients.

Additional resources

Mobile Apps Docs and Gateway to Tutorials

Offline Data Sync in Azure Mobile Apps

https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-value-prop/
https://azure.microsoft.com/en-us/documentation/articles/app-service-mobile-offline-data-sync/

Common Mobile App Scenarios

14

Scaling your Mobile App’s Backend

Overview

Scale up or scale out—Azure App Service has you covered

with easy-to-configure tools right within the Azure Portal.

You control how your mobile app scales by adjusting

settings of your App Service Plan.

The problem

You want your users to have fast access to your mobile app.

You need to be able to handle temporal pressures caused

by end of month and seasonal demand. The bottom line is

your web app needs to be up and ready when your users

need it.

The solution

Azure App Service provides what you need, when you need

it with easy to set scale up and scale out options that can

provide your app with elastic scale with a few mouse clicks

and a slider or two.

Services used

 Azure App Service

The three Basic options give you one or more dedicated

CPU cores and dedicated memory, along with the ability to

specify custom domains. With the Free plan, you have to

use the azurewebsites.net domain. In addition to allocating

up to four cores, you can also scale out, with up to three

machines with four cores each. With the Standard plans,

you can scale out to up to ten machines in a web farm,

along with support for using SSL with your custom

domains. (As mentioned earlier, even free web sites support

SSL automatically, but you have to use the

azurewebsites.net domain if you want SSL on the Basic,

Shared, or Free plans.) The Standard plan also offers

automated daily backup of your site, along with slots to

support staged deployments with rollback. The Standard

plan also offers support for Azure’s Traffic Manager,

enabling you to deploy to multiple sites across the world

and direct incoming requests to whichever is nearest to the

user. Finally, the Premium plans allow you to scale out to up

to twenty instances, with multiple automated backups

every day (up to fifty), as well as offering up to 250GB of

filesystem storage and support for BizTalk Services.

As you dig in and move up out of the free plan, you can

choose different “scale by” formats: CPU Percentage,

manual instance count, and schedule and performance

rules. The high-end options will vary based on the plan level

you select. The first two options provide “large” levers to

adjust the app service scaling properties either by simple

CPU percentage load—add more power when the CPUs are

taxed—or total instances which simply sets a hard-coded

upper bound based on count.

You’ll find the schedule and performance rules provide

more granular control. You can create your own rules and

create a schedule that adjusts your instance counts based

on time and performance metrics. You can configure auto-

scaling rules for different performance metrics, including

CPU, memory, disk queue, HTTP queue, and data flow. One

other feature that comes in handy is that you can send

emails to administrators when scale actions kick in.

Also, don’t forget: If your mobile app service uses a SQL

Database, the sizing choice you made when you configured

it can affect your application’s overall performance, too. The

next section covers how you can mitigate that.

Additional resources

Scale up an app in Azure App Service

Hands-on labs, sample code, and more

https://azure.microsoft.com/en-us/documentation/articles/web-sites-scale/
http://rgroup.us/

Common Mobile App Scenarios

15

Caching for Performance

Overview

Data persistence takes many forms. Modern mobile apps

can be viewed in two pieces. You have your mobile client

apps installed on devices. You then have your backend that

processes application logic, provides large scale data

persistence, and interaction with other systems. Relational

databases like SQL Server, traditional file repositories,

NoSQL databases, and in-memory caches are all useful

tools to have as your application’s needs change. Adding

caching support is one of the easier ways to enhance your

application’s backend performance.

The problem

Hitting the database or other persistent store every time

information is needed by a mobile app’s backend can be

expensive. It slows down the client app as it waits for the

service layer to process the request and return. This can

cause your application run time costs to go up needlessly

and negatively impact the user’s experience.

The solution

Azure Redis Cache provides high throughput, consistent

low-latency data access to power your fast, scalable Azure-

hosted web app.

Services used

 Azure Redis Cache

Azure Redis Cache is a high-performance, memory-based

cache that can significantly improve performance and

scalability when you have data that needs to be accessed

very frequently. Azure Redis Cache is based on the popular

open-source Redis cache. It is accessed over the network,

so it can be shared by multiple machines in a web farm if

you choose to scale out your service. This makes it more

flexible than simply caching data in a web server’s memory;

if you update a Redis cache entry, everything will have

access to the new value. By using a Redis cache, you can

take significant load off persistent storage systems such as

SQL Database.

To use Azure Redis Cache, you need to first add it to your

web app via the Azure Portal. You need to provide a DNS

name that is globally unique. As with other Azure assets,

you’ll want to add it to the correct Resource Group and

location used by your web app. Finally, you’ll need to

determine your pricing tier. Once you’ve done that you can

turn to your mobile app.

As with many other technologies, you add support to

access Redis Cache to your application by importing the

relevant NuGet package. The most common one used is the

Stack Exchange Redis package. This package provides your

application with access to the Redis Cache Connection

Multiplexor and other objects necessary to cache your

application’s data. Once you’ve worked out the areas that

need caching, you need to add the Redis Cache connection

information to your app so it has access to the cache when

you deploy your updated version to Azure.

Additional resources

How to Use Azure Redis Cache

Hands-on labs, sample code, and more

https://azure.microsoft.com/en-us/services/cache/
https://azure.microsoft.com/en-us/documentation/articles/cache-dotnet-how-to-use-azure-redis-cache/
http://rgroup.us/

Common Mobile App Scenarios

16

Develop, Distribute, and Beta-test

your Mobile Apps

Overview

HockeyApp is a service for app developers that helps you

during the development process by providing SDKs and

services that include the management and recruitment of

testers, the distribution of apps, and the collection of crash

reports. Today, HockeyApp supports apps on iOS, Android,

OS X, and Windows. Crash reports and user metrics are

working on all those platforms. Beta distribution is fully

functional on iOS, Android, Windows Phone, and Mac OS X.

The service is under active development and continues to

evolve and expand. In particular, similar features found in

Application Insights for web apps are coming to

HockeyApp.

The problem

Nobody wants their app to crash, but when it happens, you

want detailed crash reports and information quickly. In

addition, when users are using your app, having metrics

helps you understand how your app is used and helps focus

your development efforts. Even if you can get anonymous

metrics, getting feedback directly from your customers can

be very valuable.

The solution

HockeyApp helps with all of these issues. It will create

debug symbols and group similar crashes to help you easily

understand their frequency and prioritize your backlog.

Plus, integrate the crash reports with your existing DevOps

tooling to manage all of your work items in one place. It

supports usage metrics so you can see what features your

users use most and it enables in-app feedback collection.

All of this information and data is easily managed from the

HockeyApp portal. HockeyApp even helps you distribute

your apps for testing and provides specific support for

running beta tests.

Services used

 HockeyApp

To get started with HockeyApp, you access the HockeyApp

portal and create an account. You can work with two mobile

apps for free. After that, you’ll need to find a plan that fits

your needs. Once you’ve registered for your account, you

then generally install the HockeyApp on your test devices

and/or emulators. You need to do this so you can authorize

the devices to receive test versions of your app via the

HockeyApp portal. If you do this right away, you’ll be ready

to go, but you won’t have any apps to install yet.

The next step is to publish your app via HockeyApp. This

can be done manually—which is how all the major vendors

make you publish to their app stores—or you can automate

the process via a DevOps process. Visual Studio Team

Services, for example, supports a Team Build and Release

Management task that will help you publish the output of

a build to HockeyApp in a continuous delivery pipeline. You

can also integrate with Jenkins, Travis CI, and more. Once

you’ve published the app, it will show up in the mobile

HockeyApp on your test devices and you’ll be able to install

and run the app.

You can do all of this with no code changes. However,

HockeyApp shines once you add the SDK to your mobile

app project and integrate support for feedback, metrics,

and crash reporting. There are three categories of User

Metrics HockeyApp collects and will provide to you. Basic

User Metrics help you understand the adoption of your app

and app versions. Custom Events tracking (as of June 2016,

this is a Preseason (beta) feature) allows you to better

understand how customers are using your app. Quality and

performance metrics (such as users impacted by crashes)

makes sure that you ship a high quality app. In order to get

these benefits, you need to need to register your app’s

https://www.hockeyapp.net/
https://www.hockeyapp.net/

Common Mobile App Scenarios

17

unique ID at startup via the HockeyApp API. Once you do

this, you use the API to access the FeedbackManager class

from your code that allows you to integrate the HockeyApp

feedback user experience. With the API, you can then

register the crash manager and update manager

components as you see fit with a couple lines of code.

Additional resources

HockeyApp Overview

Hands-on labs, sample code, and more

API Management

Overview

Azure API Management provides mechanisms to monitor

and control access to an API, including the ability to prevent

individual users from abusing the API by imposing rate

limits. It provides you with a Developer Portal for your API

that developers who wish to use your application’s services

can log into to discover information about the API. It can

consolidate multiple backend services behind a single

public-facing API. It also has a variety of options for

authentication: it can impose various authentication

requirements on API users, and it can also pass credentials

through to the underlying service. It also provides a

Publisher Portal which you, as the owner of an API, can use

to view analytics to discover how your API is being used.

The problem

You have an API that is used by your organization’s own

apps. However, partners need access to your backend for

their mobile apps and you need better control and

management functions that you get by exposing your

existing API on its own.

The solution

Azure API Management allows you to create an API

Management instance, wrap your existing API up, and then

allow partners to access your services with you in control.

Services used

 Azure API Management

 Azure App Service

The first thing needed for working with API management is,

in fact, an API. That said, if you have a mobile app talking to

Azure App Service, you by default have some sort of API.

Once you’ve got that, jump to the Azure portal and create

a new API Management resource. As with other Azure

resources, you need to provide a globally unique name that

becomes a part of the API Management App’s URL. You’ll

also need to pick a region. Lastly, you need to provide your

organization name and an administrator email address.

After you’ve done this, you can move to wrap your API up

with API Management. Still using the Azure portal, you’ll

import your API. API Management supports multiple ways

to “read” your API into the system. These include cut and

paste from the clipboard, from a text file, or a remote URL

that exposes information via WADL or Swagger. Next you’ll

want to configure security on your API.

Security can involve two mechanisms. First, you might want

to secure your API so only API Management can access it.

You can secure your API via mutual certificate

authentication. You could even support VPN access to an

on-premises API using ExpressRoute. Second, you want to

control who has access to your API via API Management.

For this, you can use OAuth 2.0 with Azure AD or Open ID

Connect. Both options require you to have registered your

app with Azure AD. You use the Azure AD and API

Management portals to share secrets and specify how long

the relationship is valid for—a year or two. Next, you can

test your configuration from portal.

https://azure.microsoft.com/en-us/services/hockeyapp/
http://rgroup.us/

Common Mobile App Scenarios

18

You will most likely want to create a test sample to make

sure everything works as expected. Once in use, you can

inspect API usage information in the Publishers Portal.

Additional resources

Hands-on labs, sample code, and more

API Management Documentation

http://rgroup.us/
https://azure.microsoft.com/en-us/documentation/services/api-management/

Common Mobile App Scenarios

19

Conclusion

Building a rich mobile experience means building great

mobile apps for users to put on their devices but also a

backend that will scale, perform under pressure, and be

backed by an organization that’s not going to leave you

hanging. In this guide, we’ve explored how Azure App

Service helps you save time and cut to the code. We’ve

highlighted Azure’s support for mobile apps, both client

and server, and the time saving features to help you deliver

a fantastic experience for the consumers of your app.

Cut right to the code today. Welcome to Azure.

Recommended Next Steps

 Download the hands-on labs, sample code, and

ARM templates to cut right to the code.

 Create an Azure account and get started for free

with $200 in Azure credit.

 Explore the range of free options available to get

you started, like hosting up to ten free web and

mobile apps on Azure App Service, Azure Search to

add sophisticated search capabilities, and Visual

Studio Application Insights to monitor live apps.

 Be our guest for up to an hour of Azure App Service

experience with no subscription, free of charge and

commitment.

http://rgroup.us/
http://rgroup.us/
https://azure.microsoft.com/en-us/free/
https://azure.microsoft.com/en-us/free/pricing-offers/
https://azure.microsoft.com/en-us/free/pricing-offers/
https://tryappservice.azure.com/
https://tryappservice.azure.com/

	Abstract
	Table of Contents
	Introduction
	Why Use App Service for your Mobile Apps
	Getting Started with Microsoft Azure
	When to Use It
	Additional steps
	Custom Domain
	SSL Certificate
	Continuous Delivery
	Additional resources

	Identity Management
	Overview
	The problem
	The solution
	Services used
	Azure Active Directory
	Social Sign In
	Additional resources

	Push Notifications
	Overview
	The problem
	The solution
	Services used
	Additional resources

	Offline Data Sync
	Overview
	The problem
	The solution
	Services used
	Additional resources

	Scaling your Mobile App’s Backend
	Overview
	The problem
	The solution
	Services used
	Additional resources

	Caching for Performance
	Overview
	The problem
	The solution
	Services used
	Additional resources

	Develop, Distribute, and Beta-test your Mobile Apps
	Overview
	The problem
	The solution
	Services used
	Additional resources

	API Management
	Overview
	The problem
	The solution
	Services used
	Additional resources

	Recommended Next Steps

	Overview
	Common Mobile App Scenarios
	Conclusion

